توسعه شبکه عصبی مصنوعی مبتنی بر الگوریتم ژنتیک به منظور پیش‌بینی آزمایش‌های PVT چاه‌های نفت در صنایع بالادستی

Authors

  • حسین اکبری پور بخش مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه تربیت مدرس، تهران، ایران
  • محسن اسلام‌نژاد روه مهندسی فناوری و اطلاعات، دانشکده فنی و مهندسی، دانشگاه تربیت مدرس، تهران، ایران
Abstract:

در مرحله صیانت از مخازن نفتی صنایع بالادستی، آزمایش‌های پیچیده‌ای موسوم به PVT برای شناسایی خواص سیالات مخزن انجام می‌گیرد. وجود مشکلاتی چون خطرات احتمالی، زمان‌بر بودن، دقیق نبودن نمونه‌ها و محدودیت‌های دما و فشار، باعث شده تا استفاده از روش‌های هوشمند در این حوزه گسترش یابد. در این پژوهش به منظور اجتناب از مشکلات مذکور و یافتن رابطه پیچیده و غیرخطی داده‌های آزمایش‌های‌ PVT از شبکه عصبی مصنوعی بهره گرفته شده است. همچنین، از الگوریتم ژنتیک به منظور تعیین مقادیر بهینه پارامترهای مدل شبکه‌ عصبی در فرآیند آموزش استفاده شده است. به منظور ارزیابی رویکرد توسعه یافته از مجموعه داده‌های چاه‌های نفتی جنوب ایران بهره گرفته شد و نتایج حاصل نشان می‌دهد که استفاده از شبکه عصبی مصنوعی مبتنی بر الگوریتم ژنتیک، برخلاف روش‌های کلاسیک، در زمان کمتر و با دقت بالایی خواص سیالات مخزن (ضریب حجمی سیال و فشار نقطه حباب) را پیش‌بینی می‌نماید. در نتیجه، کارشناسان و مدیران صنایع بالادستی مخازن نفتی ایران می‌توانند از شبکه عصبی پیشنهادی در راستای پیش‌ینی آزمایش‌های PVT بهره گیرند.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

توسعه شبکه عصبی مصنوعی مبتنی بر الگوریتم ژنتیک به منظور پیش بینی آزمایش های pvt چاه های نفت در صنایع بالادستی

در مرحله صیانت از مخازن نفتی صنایع بالادستی، آزمایش های پیچیده ای موسوم به pvt برای شناسایی خواص سیالات مخزن انجام می گیرد. وجود مشکلاتی چون خطرات احتمالی، زمان بر بودن، دقیق نبودن نمونه ها و محدودیت های دما و فشار، باعث شده تا استفاده از روش های هوشمند در این حوزه گسترش یابد. در این پژوهش به منظور اجتناب از مشکلات مذکور و یافتن رابطه پیچیده و غیرخطی داده های آزمایش های pvt از شبکه عصبی مصنوعی ...

full text

پیش‌بینی مدیریت سود مبتنی بر مدل جونز تعدیل شده با استفاده از مدل شبکه عصبی مصنوعی و الگوریتم ژنتیک

در سالهای اخیر مدیریت سود در پژوهش های دانشگاهی توجه زیادی را به خود جلب کرده است. هدف این پژوهش پیش بینی مدیریت سود از طریق اقلام تعهدی اختیاری مبتنی بر مدل جونز تعدیل شده است. در این پژوهش از دو مدل شبکه عصبی مصنوعی و مدل ترکیبی الگوریتم ژنتیک – شبکه عصبی به عنوان الگوی موفقجهت پیش بینی مدیریت سود مبتنی بر جونز تعدیل شده در بورس اوراق بهادار تهران استفاده شده است. نمونه مورد استفاده در این پژ...

full text

مدل‌سازی و بهینه‌سازی نانوبیوسنسور الیگونوکلئوتیدی با استفاده از رویکرد مبتنی بر شبکه عصبی مصنوعی و الگوریتم ژنتیک

توسعه هر نوع بیوسنسور با چالش‌هایی در زمینه بهینه‌سازی پارامترها و کالیبراسیون مواجه است. در این تحقیق رویکردی مبتنی بر یادگیری ماشین برای مدل‌سازی و بهینه‌سازی مولفه­های تاثیرگذار در ساخت نانوبیوسنسور الکتروشیمیایی بر اساس الکترود کربن شیشه‌ای اصلاح شده با گرافن اکسید و نانومیله طلا در شرایط کاری آزمایشگاهی ارائه شده است. پاسخ نانوبیوسنسور به عنوان خروجی و تاثیر هشت عامل موثر شامل: غلظت گرافن ...

full text

کاربرد شبکه عصبی مبتنی بر الگوریتم ژنتیک در پیش بینی تقاضای بلندمدت انرژی

پیش­بینی تقاضای انرژی جهت عرضه به موقع، تنظیم بازار، هدفگذاری میزان صادرات و ایجاد امنیت انرژی اهمیت ویژه­ای دارد. روش­های مختلفی برای پیش­بینی تقاضای انرژی معرفی شده است که در این بین با توجه به روند غیرخطی و پرنوسان تقاضای انرژی، تکنیک­های غیرخطی نتایج مطلوب­تری داشته است. شبکه­های عصبی و الگوریتم ژنتیک از مهمترین و پرکاربردترین تکنیک­های غیرخطی در این زمینه می­باشند که هر یک نقاط ضعف و قوت خ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 25  issue 84

pages  135- 149

publication date 2015-11-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023